
NASA-IVV-97-001

NASA IV&V Facility, Fairmont, West Virginia

The need for V&V in Reuse-Based Software Engineering

Edward A. Addy

June 10, 1997

This technical report is a product of the National Aeronautics and Space Administration

(NASA) Software Program, an agency wide program to promote continual improvement

of software engineering within NASA. The goals and strategies of this program are

documented in the NASA software strategic plan, July 13, 1995.

Additional information is available from the NASA Software IV&V Facility on the

World Wide Web site http://www.ivv.nasa.zovl

This research was funded under cooperative Agreement #NCC 2-979 at the NASA/WVU

Software Research Laboratory.

Papergubmitted to

Annals on Software Engineering, Special Volume on Software Reuse

THE NEED FOR V&V IN REUSE-BASED SOFTWARE ENGINEERING

Edward A. Addy

NASA/WVU Software Research Laboratory

NASA/WVU Software IV&V Facility

100 University Drive

Fairmont, WV 26554

eaddy@wvu.edu

304-367-8353 (voice)

304-367-8211 (fax)

THE NEED FOR V&V IN REUSE-BASED SOFTWARE ENGINEERING

Edward A. Addy

eaddy@wvu.edu

NASAJWVU Software Research Laboratory

ABSTRACT

V&V is currently . performed during

application development for many systems,

especially safety-critical and mission-critical

systems. The V&V process is intended to

discover errors, especially errors related to

critical processing, as early as possible

during the development process. The

system application provides the context
under which the software artifacts are

validated.

This paper describes a framework that

extends V&V from an individual application

system to a product line of systems that are

developed within an architecture-based

software engineering environment. This
framework includes the activities of

traditional application-level V&V, and

extends these activities into domain

engineering and into the transition between

domain engineering and application

engineering. The framework includes

descriptioiis of the types of activities to be

performed during each of the life-cycle

phases, and provides motivation for the
activities.

INTRODUCTION

The implementation of reuse-based software

engineering not only introduces new

activities to the software development

process, such as domain analysis and

domain modeling, it also impacts other

aspects of software engineering. Other areas

of software engineering that are affected

include Configuration Management, Testing,

Quality Control, and Verification and

Validation (V&V). Activities in each of

these areas must be adapted to address the

entire domain or product line rather than a

specific application. This paper discusses

changes and enhancements to V&V methods

that provide a framework for performing
V&V within reuse-based software

engineering.

Verification and Validation (V&V) methods
are used to increase the level of assurance of

critical software, particularly that of safety-
critical and mission-critical software.

Software V&V is a systems engineering

discipline that evaluates software in a

systems context. 1 The V&V methodology

has been used in concert with various

software development paradigms, but

always in the context of developing a

specific application system. However, the

reuse-based software development process

separates domain engineering from

application engineering in order to develop

generic reusable software components that

are appropriate for use in multiple

applications.

The earlier a problem is discovered in the

development process, the less costly it is to

correct the problem. To take advantage of

this, V&V begins verification within system

application development at the concept or

The Need for V&V In Reuse-Based Software Engineering

high-level requirements phase. However, a

reuse-based software development process

has tasks that are performed earlier, and

possibly much earlier, than high-level

requirements for a particular application

system.

In order to bring the effectiveness of V&V

to bear within a reuse-based software

development process, V&V must be

incorporated within the domain engineering

process. Failure to incorporate V&V within

domain engineering will result in higher

development and maintenance costs due to

losing the opportunity to discover problems

in early stages of development and having to

correct problems in multiple systems already

in operation. Also, the same V&V activities

will have to be performed for each

application system having mission or safety-
critical functions.

On the other hand, it is not possible for all
V&V activities to be transferred into domain

engineering, since verification extends, to the

installation and operation phases of

development and validation is primarily

performed using a developed system. This

leads to the question of which existing

(and/or new) V&V activities would be more

effectively performed in domain engineering

rather than in (or in addition to) application

engineering.

This paper describes a framework for

performing V&V within reuse-based

software engineering. The framework
identifies V&V tasks that could be

performed in domain engineering, V&V

tasks that could be performed in the

transition from domain engineering to

application engineering, and the impact of

these tasks on application V&V activities.

The criteria and motivation for performing

V&V in domain engineering are also

considered.

VERIFICATION AND VALIDATION

IN TRADITIONAL SYSTEM

APPLICATION ENGINEERING

V&V has been performed during application

system development, within the context of

many different development methodologies,

including waterfall, spiral, and evolutionary

development. V&V is a set of activities

performed in parallel with system

development and designed to provide

assurance that a software system meets the

operational needs of the user. It ensures that

the requirements for the system are correct,

complete, and consistent, and that the life-

cycle products correctly implement system

requirements.

The term verification refers to the process of

determining whether Or not the products of a

given phase of the software development

cycle fulfill the requirements established

during the previous phase, while validation

is the process of evaluating software at the

end of the software development process to

ensure compliance with software

requirements. 2 Verification is intended to

ensure that the product is built correctly,

while validation assures that the correct

product is built.

While verification and validation have

separate definitions, in practice the activities

are merged into a single process. This

process evaluates software in a systems

context, using a structured approach to

analyze and test the software against system

functions and against hardware, user and
other software interfaces. | V&V is also

described as a series of technical and

management activities performed to improve

the quality and reliability of that system and

2

The Need for V&V In Reuse-Based Software Engineering

to assure that the delivered product satisfies "

the user's operational needs/

V&V activities are designed to be

independent of but complementary to the

activities of the development and test teams.

Where the development team is usually

focused on nominal performance and the

testing is usually based on requirements and

operational profiles, V&V includes analysis
and tests on critical and off-nominal

behavior throughout all phases of the

development lifecycle. V&V activities also

complement the activities of the

configuration management and quality

assurance groups rather than being a

duplicate or replacement of these activities. 4

A set of minimal and optional V&V

activities is defined in the IEEE Standard for

Software Verification and Validation Plans. 5

These activities are divided into the life-

cycle phases listed below. The V&V tasks

within each life-cycle phase are shown in

Figure 1.

• Management of V&V

• Concept Phase V&V

• Requirements Phase V&V

• Design Phase V&V

• Implementation Phase V&V

• Test Phase V&V

• Installation and Checkout Phase

V&V

• Operations and Maintenance

Phase V&V

V&V is performed as a part of a risk

mitigation strategy for application systems.

The risks can be in areas such as safety,

security, mission, finance, or reputation.

The scope and level of V&V can vary with

each project, based on the criticality of the

system and on the role of software in

accomplishing critical functions of the

system. 6 V&V determines the software

involved in high-risk areas, and V&V
activities are focused on this critical

software.

DIFFERENCES BETWEEN V&V AND

COMPONENT CERTIFICATION

Much work has been done in the area of

component certification, which is also called

evaluation, assessment, or qualification.

These terms can have slightly different

meanings, but refer in general to rating a

reusable component against a specified set

of criteria.

Reuse libraries often use levels to indicate

the degree to which a component has been

evaluated by the library. The Asset Source

for Software Engineering Technology

(ASSET) library and the Army Reuse Center

library both have four levels of

certification. 7 Component-based libraries

evaluate reusable components against

criteria such as reusability, evolvability,

maintainability, and portability, as well as

expending various levels of effort to ensure

the component meets its specification.

The Certification of Reusable Software

Components Program at Rome Laboratory

has proposed a certification framework

based on removing defects from candidate

reusable components. 8 This certification

process consists of four levels of analysis

and testing, each designed to remove certain

categories of defects from the reusable

component. The levels of analysis and

testing correspond to more stringent levels

of certification, which are composed of the

factors of scope and confidence.

The Comprehensive Approach to Reusable

Defense Software (CARDS) library is a

model-based library based on a generic

The Need for V&V In Reuse-Based Software Engineering

PHASE

Management

Concept

Requirements

Design

Implementation

,Test

Installation and

Checkout

Operations and
Maintenance

- TASKS

Software Verification and Validation Plan Generation

Baseline Change Assessment

Management Review

Review Support

Concept Documentation Review

Software Requirements Traceability Analysis

Software Requirements Evaluation

Software Requirements Interface Analysis

System Test Plan Generation

Acceptance Test Plan Generation

Design Traceability Analysis

Design Evaluation

Design Interface Analysis

Component Test Plan Generation

Integration Test Plan Generation
Test Design Generation

• component testing

• integration testing

• system testing

• acceptance testing

Source Code Traceability Analysis
Source Code Evaluation

Source Code Interface Analysis
Source Code Documentation Evaluation

Test Case Generation

• component testing

• integration testing

• system testing

• acceptance testing
Test Procedure Generation

• component testing

• integration testing

• system testing

Component Test Execution
Test Procedure Generation

• acceptance testing

Integration Test Execution

System Test Execution

Acceptance Test Execution

Installation Configuration Audit

V&V Final Report Generation
Software V&V Plan Revision

Anomaly Evaluation

Proposed Change Assessment
Phase Task Iteration

Figure 1: ¥&V Tasks for Life-Cycle Phases in Application Engineering

4

The Need for V&V In Reuse-Based Software Engineering

architecture. Reusable components are

evaluated not only on the same general

criteria as that of component-based libraries,

but also on the "form, fit, and function"

relative to the generic architecture. 9 The

CARDS library uses this difference to draw

a distinction between "certification" and

"qualification". The Component Providers

and Tool Developers Handbook defines

component certification as "The process of

determining if a component being

considered for inclusion in a library meets

the requirements of the library and passes all

testing procedures. Evaluation takes place

against a common set of criteria (reusability,

portability, etc.)." Component qualification

is defined as "The process of determining if

a potential component is appropriate to the

library and meets all quality requirements.

Evaluation takes place against domain

criteria."

The common thread through all of these

certification processes is the focus on the

component rather than the systems in which

the component will eventually be (re)used.

Dunn and Knight note that with the

exception of the software industry itself,

customers _ourchase systems and not
components. Ensuring that components

are well designed and reliable with respect

to their specifications is necessary but not

sufficient to show that the final system

meets theneeds of the user. Component

evaluation is but one part of an overall V&V

effort, analogous to code evaluation in V&V

of an application system.

Another distinction between V&V and

component certification is the scope of the

artifacts that are considered. While

component certification is primarily focused

on the evaluation of reusable components

(usually code-level components), V&V also

considers the domain model and the generic

architecture, along with the connections

between domain artifacts and application

system artifacts. Some level of component

certification should be performed for all

reusable components, but V&V is not

always appropriate. V&V should be

conducted at the level determined by an

overall risk mitigation strategy.

JUSTIFICATION FOR PERFORMING

V&V WITHIN DOMAIN

ENGINEERING

Studies have shown that the cost and

difficulty of correcting an error increases

dramatically as the error is discovered in

later life-cycle phases. 6 V&V addresses that

issue in traditional system development

through activities that begin in the concept

or high-level requirements phase and

continue throughout all life-cycle phases.

The V&V activities are focused on high-risk

areas, so that errors in the high-risk areas

can be discovered in time to evolve a

complete and cost effective solution rather

than forcing a makeshift solution due to

schedule constraints.

Within reuse-based software engineering,

software engineering activities may be

performed prior to the concept phase of a

particular application system. In order to

extend the benefit of early error detection to

reuse-based software engineering, V&V

must be incorporated within the domain

engineering process. Performing V&V at

the domain level may also reduce the level

of effort required to perform V&V in the

individual application systems.

Although software is the target of V&V

activities, V&V recognizes that software

does not execute in isolation, but is an

integral part of a system. 11 In order to

provide assurance that critical functions will

The Need for V&V In Reuse-Based Software Engineering

be performed correctly, software must be-
evaluated within the context in which the

software will execute. In reuse-based

software engineering, the context for V&V

must be provided by the domain model and
domain architecture.

FRAMEWORK FOR PERFORMING

V&V WITHIN REUSE-BASED

SOFTWARE ENGINEERING

One model for reuse-based software

engineering is the Two Life-Cycle Model

shown in Figure 2, developed by the U.S.

Department of Defense Software for

Adaptable, Reliable Systems (STARS)

program. This model assumes a domain-

specific, architecture-centered approach to
software reuse. The domain model

describes the problem space of the domain,

and expresses requirements. The domain

architecture describes the solution space of

the domain, while the domain components

are intended to be used within application

systems to meet the functions described in
the domain architecture.

A draft framework for performing V&V

within reuse-based software engineering is

formed by adding V&V activities to the

STARS Two Life-Cycle Model. The

application-level IV&V tasks described in

IEEE STD 1012 serve as a starting point.

Domain-level tasks are added to link life-

cycle phases in the domain level, and

transition tasks are added to link application

phases with domain phases. This draft

framework was refined by a working group

at Reuse '96 _2, and the resultant framework

is shown in Figure 3. The specific tasks of

each phase at the domain and transition

levels are listed in Figure 4.

Domain-level V&V tasks are performed to

ensure that domain products fulfill the

requirements established during earlier

phases of domain engineering. Transition-

level tasks provide assurance that an

application artifact correctly implements the

corresponding domain artifact. Traditional

application-level V&V tasks ensure the

application products fulfill the requirements

established during previous application life-

cycle phases.

Performing V&V tasks at the domain and

transition levels will not automatically

eliminate any V&V tasks at the application

level. However, it might be possible to
reduce the level of effort for some

application-level tasks. The reduction in
effort could occur in a case where the

application artifact is used in an unmodified

form from the domain component, or where

the application artifact is an instantiation of

the domain component through parameter

resolution or through generation.

Domain maintenance and evolution are

handled in a manner similar to that described

in the operations and maintenance phase of

application-level V&V. Changes proposed

to domain artifacts are assessed by V&V to

determine the impact of the proposed

correction or enhancement. If the

assessment determines that the change will

impact a critical area or function within the

domain, appropriate V&V activities are

repeated to assure the correct

implementation of the change.

Domain-Level Tasks

The domain-level tasks are analogous to the

application-level tasks, in that the products

of each phase are evaluated against the

requirements specified in the previous stage

and against the original user requirements.

The domain-level tasks can be divided into

6

The Need for V&V In Reuse-Based Software Engineering

Domain Management
Existing

System
Artifacts

I Ooma,o
I!;I Analys

Domain

Implementation

Domain Domain Domain

Model Architecture Components

New System

Requirements System

Analysis Design

Application Engineering

System

Implementation

New

System

Figure 2: STARS Two Life-Cycle Model

Domain Management

Domain Engineering
New and Domain Domain

Existing Analysis Design
Artifacts and

Requirements. Domain Domain

(Domain blodel

Concepts)

Domain

Dom_n

System Requirements System System

Requirements Analysis Design

(Common and System System New

Unique) ;pecification System

Development
"'::: * o" t *'::'"

Verification Application En

-_ Validation

Correspondence
Program Management

Figure 3: Framework for V&V within Reuse-Based Software Engineering

7

The Need for V&V In Reuse-Based Software Engineering

LEVEL

Domain

Engineering

Transition

PHASE TASKS

Validatei3omain ModelDomain

Analysis

Domain Design

Domain

Implementation

Requirements

Design

Implementation

Model Evaluation

Requirements Traceability Analysis (especially

forward traceability for completeness)

Verify Domain Architecture

Design Traceability Analysis

Design Evaluation

Design Interface Analysis

Component Test Plan Generation

Component Test Design Generation

Verify and Validate Domain Components

Component Traceability Analysis

Component Evaluation

Component Interface Analysis

Component Documentation Evaluation

Component Test Case Generation

Component Test Procedure Generation

Component Test Execution

Correspondence Analysis between System

Specification and Domain Model

Correspondence Analysis between System
Architecture and Domain Architecture

Correspondence Analysis between System

Implementation and Domain Components

Figure 4: V&V Tasks for Life-Cycle Phases at the Domain and Transition Levels

the three phases of domain analysis, domain

design, and domain implementation, which

correspond to the application phases of

requirements, design, and implementation.

During domain analysis V&V, the V&V
team should ensure that the domain model is

an appropriate representation of the user

requirements. (The singular term "model" is

not intended to imply that only one model

will be constructed; this term is used to

mean the one or more models that express

the domain requirements.) Note that

ensuring that user requirements are satisfied

implies that the requirements in the domain

must be explicitly stated. Criticality analysis

is performed to ensure that high risk

requirements are appropriately addressed,

either mission-critical requirements or those

related to properties such 'as safety and

security. The criticality analysis should also
determine critical functions that will be.

performed by software. The domain model

is evaluated to ensure that the requirements

are consistent, complete, and realistic,

especially in the high risk areas. The model

is evaluated to determine responses to error

and fault conditions and to boundary and

8

The Need for V&V In Reuse-Based Software Engineering

out-of-bounds conditions. As the domain-

engineering progresses into later phases, the

requirements are traced forward. This will

allow evaluation of the impact of changes to

the domain artifacts.

Domain design V&V tasks focus on

ensuring that the domain architecture

satisfies the requirements expressed in the

domain model. Each requirement in the

domain model should trace to one or more

items in the domain architecture (forward

traceability), and each item in the domain

architecture should trace back to one or

more requirements in the domain model

(reverse traceability). The domain

architecture is evaluated to ensure that it is

consistent, complete, and realistic.

Interfaces between components are

evaluated to ensure that the architecture

supports the necessary communication

between components in the architecture,

users, and external systems. Planning and

design of component testing are performed

during this phase. The component testing
should include error and fault scenarios,

functional testing of critical activities, and

response to boundary and out-of-bounds

conditions.

Domain Implementation V&V tasks ensure

that the domain components satisfy the

requirements of the domain architecture and

will satisfy the original user requirements.

The components should have a forward and

reverse tracing with the domain architecture.

Components that are involved with

performing critical actions should receive

careful consideration. The interface

implementation, both within components of

the architecture and with systems outside the

architecture, is evaluated to ensure that it

meets the requirements of the domain

architecture. Component test cases and test

procedures are generated, and component

testing is performed.

Integration test activities are explicitly

omitted from the domain-level tasking, since

integration testing is oriented toward

application-specific testing. Some form of

integration testing might be appropriate

within domain-level V&V in the case where

the architecture calls for specific domain

components to be integrated in multiple

systems. This limited form of integration

testing could be done along with the

component testing activities.

Correspondence Tasks

Correspondence analysis is a term not found
in IEEE STD 1012. The term is used within

this paper to describe the activities that are

performed to provide assurance that an

application artifact corresponds to a domain

artifact; i.e., the application artifact is a

correct implementation of the domain

artifact. Four activities are to be performed

during correspondence analysis:

• Map the application artifact to the

corresponding domain artifact.

• Ensure that the application artifact has

not been modified from the domain

artifact without proper documentation.

• Ensure that the application artifact is a

correct instantiation of the domain

artifact.

• Obtain information on testing and

analysis on a domain artifact to aid in

V&V planning for the application

artifact.

Correspondence analysis is performed

between the corresponding phases of the

domain engineering and application

engineering life-cycles. The system

specification for any system within the

domain should correspond to the domain

9

The Need for V&V In Reuse-Based Software Engineering

model. The system specification could

involve instantiating, parameterizing, or

simply satisfying the requirements expressed

in the domain model. Any system-unique

requirements should be explicit, and the

rationale for not addressing these system-

unique requirements within the domain
model should be stated.

The system architecture is analyzed to

ensure that it satisfies the requirements

specified in the domain architecture. Any

variations should be documented along with

the reason for the variation. The rationale

for parameters chosen or options selected in
constructing the system architecture from

the domain architecture should be recorded.

The system components are analyzed to

ensure correspondence to domain

components. Again, variations, parameters,

and options should be recorded along with

their rationale. Baseline testing might be

appropriate in order to compare variants of a

domain component.

COMMUNICATING RESULTS

Communicating V&V work products and

results is vital in to avoiding the repetition of

V&V tasks and to ensuring that potential

reusers can properly assess the status of

reusable Components. V&V work products
and results should be associated with the

component and made available to domain

and application engineers. In some cases,

V&V efforts might be directed at a grouping

of components rather than at an individual

component, and this information should also

be available. Groupings might include

components that are expected to occur

together in several applications, or might
include variants of one domain artifact.

The information on similar components

within the domain should be consistent in

content and format, in order to allow the

information to be easily used by both

domain engineers and application engineers.
The information that should be

communicated include the following:

• V&V Planning Decisions and
Rationale

• V&V Analysis Activities

• V&V Test Cases and Procedures

• V&V Results and Findings

V&V OF DOMAIN ARTIFACTS

This paper focuses on the issue of V&V

within domain engineering, in the situation

where the final systems would be subject to

V&V even if the systems were not

developed within a reuse environment.

Many of the same justifications for

performing V&V in a product line that

includes critical systems also apply to V&V

of general purpose reuseable components.

These general purpose components include

domain artifacts for systems that are not

critical, as well as reusable components that

are developed for general usage rather than

for a specific product line.

The Component Verification, Validation and

Certification Working Group at WISR 8

found four considerations that should be

used in determining the level of V&V of
13

reusable components:

• Span of application - the number of

components or systems that depend

on the component

• Criticality- potential impact due to a

fault in the component

10

The Need for V&V In Reuse-Based Software Engineering

• Marketability - degree to which a

component would be more likely to

be reused by a third party

• Lifetime - length of time that a

component will be used

The domain architecture serves as the

context for evaluating software components

in a product-line environment. However,

this architecture may not exist for general

use components. The Working Group

determined that the concept of validation

was different for a general use component

than for a component developed for a

specific system or product line. In the latter

case, validation refers to ensuring that the

component meets the needs of the customer.

A general use component has not one

customer, but many customers, who are

software developers rather then end-users.

Hence validation of a general use component

should involve the assurance (and

supporting documentation) that the

component satisfies a wide range of

alternative usages, rather than the specific

needs of a particular end-user.

CONCLUSION

The framework for performing V&V in

traditional application system development
can be extended to reuse-based software

engineerir_g. The extended framework

allows the V&V effort to be amortized over

the systems within the domain or product

line. Just as with V&V in application

system development, V&V should be

performed as part of an overall risk

mitigation strategy within the domain or

product line.

The primary motivation for V&V within

domain engineering is to find and correct

errors in the domain artifact in order to

prevent the errors from being propagated to

the application systems. This motivation is

especially strong where the application

systems perform critical functions. Even if

there are no critical functions performed by

the systems within the domain, V&V might

be appropriate for a component that has the

potential to be used in a large number of

application systems.

REFERENCES

1. Wallace, Dolores R. and Fujii, Roger U.,

Software Verification and Validation: Its

Role in Computer Assurance and Its

Relationship with Software Project

Management Standards, NIST Special

Publication 500-165, National Institute of

Standards and Technology, 1989.

2. IEEE STD 729, IEEE Standard Glossary

of Software Engineering, IEEE Computer

Society, 1983.

3. Lewis, Robert O., Independent

Verification and Validation, A Life Cycle

Engineering Process for Quality Software,

John Wiley & Sons, 1992.

4. Wallace, Dolores R. and Fujii, Roger U.,

"Software Verification and Validation: An

Overview", IEEE Software, May 1989.

5. IEEE STD 1012, IEEE Standard for

Software Verification and Validation Plans,

IEEE Computer Society, 1986.

6. Makowsky, Lawrence C., A Guide to

Independent Verification and Validation of

Computer Software, Defense Technical

Information Center, USA-BRDEC-

TR//2516, June 1992

7. Software Engineering Technology, Inc.,

Evaluating Reusable Software Assets:

11

The Need for V&V In Reuse-Based Software Engineering

Criteria and Procedures, DTIC AD- -

B 166803, March 1992.

8. Software Productivity Solutions, Inc.,

Certification of Reusable Software

Components, Volume 2 - Certification

Framework, Prepared for Rome

Laboratory/C3CB, December 1996.

9. Unisys, Valley Forge Engineering Center,

and EWA, Inc., Component Provider's and

Tool Developer's Handbook, Central

Archive for Reusable Defense Software,

STARS-VC-Bol7/001/00, March 1994.

10. Dunn, Michael F. and Knight, John C.,

Certification of Reusable Software Parts,

University of Virginia Technical Report CS-

93-41, August 1993.

11. Duke, Eugene, L., "V&V of Flight and

Mission-Critical Software", IEEE Software,

May 1989.

12. Addy, Edward A., "V&V Within Reuse-

Based Software Engineering", Proceedings

for the Fifth Annual Workshop on Software

Reuse Education and Training, Reuse '96,

http://www.asset.com/WSRD/conferences/

proceedingslresultsladdyladdy.html.

13. Parrish, Allen, "Working Group Report:

Component Verification, Validation and

Certificati'0n", Proceedings of the 8th Annual

Workshop on Software Reuse, March 1997.

12

